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COMPUTATION OF STRESSES IN BRIDGE SLABS DUE 
TO WHEEL LOADS' 

By H. M. Westergaard, Professor of Theoretical and Applied Mechanics, University of Illinois, Urbana, III. 

PART I.—INTRODUCTORY STATEMENT AND DEFINITIONS 

LABS IN HIGHWAY bridges must be designed to 
support wheel loads in addition to the distributed 
dead loads. The present investigation is limited 

to the problem of the stresses contributed by the wheel 
loads, it being assumed that the influences of the uni- 
form loads may be estimated with sufficient accuracy 
by available methods.! E. F. Kelley? published in 
1926 a study of the influence of the concentrated loads, 
in the light of available results of tests, and he proposed 
formulas for computing the bending moments. The 
present investigation, which is purely analytical, apples 
directly to the case of homogeneous elastic slabs. They 
are subject to accurate analysis by mathematical theory 
of elasticity. Since the reinforced concrete bridge slab 
may be assumed to act in certain respects approxi- 
mately as a homogeneous elastic slab, the results found 
for the homogeneous elastic slab may be applied in 
forming a judgment as to the proper formulas for design. 
It is notable that the results of this analysis do not 
differ widely from those derived by E. F. Kelley from 
the tests, in the study referred to. 

Figure 1.—S.LaB SUPPORTING WHEEL LOADS 

INVESTIGATION OUTLINED 

Figure 1 illustrates the problem. The purpose of the 
analysis is in particular to determine the following effects: 

(1) The effect of the load P; alone when placed at 
the center (v=0). 

(2) The combined effect at the point of application 
of P, produced by the two loads P; and P, which are 
separated by the definite distance a, the distance v being 

~ chosen so as to produce the greatest possible effect. 

a Investigation made for division of tests, U. S. Bureau of Public Roads, 
1 Uniform loads on rectangular slabs, each supported on four sides, may be dealt 

with, for example, as described in a paper by the writer, entitled ‘‘ Formulas for the 
Design of Rectangular Floor Slabs and the Supporting Girders,’’ Proc. American 
Concrete Institute, vol. 22, 1926, p. 26, 

2 EB, F. Kelley, Effective Width of Concrete Bridge Slabs Supporting Concentrated 
Loads, Public Roads, vol. 7, No. 1, March, 1926, p.7. This paper contains references 
to tests and earlier discussions of the same subject. 
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(3) The combined effect at the point of application 
of P; produced by the two loads P,; and P;, the definite 
distance 6 apart, when 7=0. 

(4) The combined effect at the point of application 
of P, produced by the four loads P,, P:, P3, and P,, 
which are at the corners of a rectangle with dimensions 
a and 6 in the directions of x and y, the distance v being 
chosen so as to produce the greatest possible effect. 

The slab is supported on beams parallel to the direc- 
tion of y. Most of the computations are based on the 
assumption that the slab extends sufficiently far in the 
directions of +y and —y without support by beams in 
the direction of x to make the influence of edges or 
beams parallel to the axis of x negligible at the points 
where the critical stresses exist, thus making it possible 
for the purpose of analysis to consider the slab to extend 
infinitely far in the directions of +y and —y, without 
beams or edges in the direction of x. At the same time 
it will be shown, and illustrated by numerical examples, 
how the influence of beams in the direction of 7 may be 
taken into consideration. When not stated otherwise 
specifically, the slab will be treated as having simply 
supported nondeflecting edges along the center lines of 
the two beams shown in Figure 1. Some computations 
will be added, however, showing the changes brought 
about by replacing the simply supported edges by 
fixed edges. These computations will lead to informa- 
tion about the intermediate cases of partially restrained 
edges, especially the important case of a continuous 
slab with several spans in the direction of x. 

Each of the four forces P,, P2, P3, and P,, shown in 
Figure 1, is the resultant of a wheel pressure which is 
distributed over a small area. In dealing with the 
stresses directly under the load P,, it will be necessary 
to take into consideration the fact that this load is dis- 
tributed over an area, but the loads P;, P3, and P, 
may be considered as concentrated forces. The load 
P, will be treated as distributed uniformly over a small 
circle with diameter c. Yet, in expressing effects at 
some distance from P,, this load, like the others, may 
be considered as concentrated at the point of application 
of the resultant of the pressure. 

Two theories of flexure of slabs are used, one of which 
may be called the ordinary theory, while the other is : 
special theory. The ordinary theory is based on an 
assumption which corresponds to the hypothesis of 
Bernouilli and Navier for beams, that the plane cross 
section of a beam remains plane and normal to the 
elastic curve of the beam. The assumption for slabs 
is that a vertical line drawn through the slab before the 
bending remains straight and normal to the deflected 
middle surface after the bending. This assumption 
applies with satisfactory accuracy to slabs of such pro- 

portions as are used commonly in bridges, except for the 

purpose of expressing the stresses produced by a con- 
centrated load in its immediate vicinity. The diffi- 
culty is overcome by use of the special theory in the 
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following manner.’ The load is introduced as dis- 
tributed uniformly over the area of a circle with an 
‘equivalent diameter” c’ instead of the true diameter c. 
By use of the special theory, in particular a solution 
eiven by A. NAdai,‘ ec’ is determined so that the ordinary 
theory, with c’ introduced as the diameter of the circle, 
leads to the same maximum stress at the bottom of the 
slab directly under the center of the circle, as does the 
special theory with the true diameter c introduced. 
The advantage of this procedure is that after introduc- 
ing c’ all the computations may be made according to 
the ordinary theory, which, naturally, is much simpler 
than the special theory. Some of the bending mo- 
ments computed are to be interpreted, accordingly, as 
equivalent bending moments. They have the signifi- 
cance that the tensile stresses at the bottom of the 
slab are computed, in the manner applicable in con- 
nection with the ordinary theory, by dividing the 
bending moment per unit of width of the cross section 
by the section modulus per unit of width; that is, by 

é where f is the thickness of the slab. 
Ome 

The study presented here draws extensively on the 
work of A. N&dai, published first in papers and later 
in his book on elastic slabs.° In a recent investigation 
of slabs loaded by concentrated forces M. Bergstrasser ° 
obtained a satisfactory experimental verification of 
Nadav’s theory. 

The results are presented in formulas, tables, and 
diagrams. 

NOTATION 

v, y=horizontal rectangular coordinates. The origin 
of coordinates is at the center of the span as 
shown in Figure 1, unless specifically stated 
otherwise. (The y-axis is moved to the left edge 
in some particular cases. ) 

r, @=horizontal polar coordinates. 
2=deflection of slab at point 2, y. 

ROADS Vol. 11, No.1 

a, b, u, v=horizontal distances as shown in Figure 1. 
h=thickness of the slab. 
c=diameter of circle over the area of which the load P; 

is distributed uniformly. 
c’ =equivalent diameter of the circle over the area of 

which the load P; is to be considered uniformly 
distributed in order to make the ordinary theory 
of flexure of the slab lead to the same maximum 
tensile stress at the bottom of the slab as does 
the special theory when the diameter is ¢. 

/}=modulus of elasticity of the material of the slab. 
u—Poisson’s ratio of the material of the slab. In the 

numerical computations the value assumed is 
w=0.15. 

te ee -¢ of stiffness of the slab N =12 (a) 7 ensure of statiness of thers ab. 

P, P;, P2, P3, and P,=wheel loads. 
w= distributed load per unit of area. 
p=load per unit of length distributed over a line. 
V,=vertical shear per unit of width of cross section in a 

section parallel to the y-axis, positive when acting 
upward on the part having the larger values of «. 

V,=vertical shear per unit of width of cross section in 
a section parallel to the z-axis, positive when 
acting upward on the part having the larger 
values of y. 

M,, M,=bending moment in the direction of x or y, 
respectively, per unit of width of cross section, 
acting upon a section parallel to the y-axis or 
z-axis, respectively, positive when it produces 
compression at the top and tension at the bottom. 

M,,=twisting moment in the directions of x and y per 
unit of width of cross section in sections parallel 
to the axes of x and y, positive when tending to 
produce compression at the top in the direction 
of the line x=y. 

M’,,=value of M,, in particular cases. 
R,=reaction per unit of length at left edge. 

Part Il—DERIVATION OF FUNDAMENTAL FORMULAS 

FUNDAMENTAL EQUATIONS OF ORDINARY THEORY OF FLEXURE 
DERIVED 

It appears expedient to-introduce the analysis by 
showing briefly the derivations of the general funda- 
mental equations of the ordinary theory of flexure of 
slabs.’ 

Figure 2 shows three fundamental types of deforma- 
tion of an element of the slab. They are produced 
by the bending moments and twisting moments 
acting on the element. One may visualize the deforma- 
tion of the element in the general case by imagining 
the three types existing in the same element at the 
same time, superimposed one on another. 

Kigure 3 shows the total forces and couples acting 
on a small block of the slab extending through the 
thickness of the slab. In passing from the face with 

* Described in a previous paper by the writer, Stresses in Concrete Pavements 
Computed by Theoretical Analysis, Public Roads, vol. 7, No. 2, April, 1926, p. 25, 
especially pp. 27, 31, and 32. 
1A, Nadai, Die Biegungsbeanspruchung von Platten durch Einzelkrifte, Schweize 
“ge Bauzeitung, vol. 76, 1920, p. 257; and his book, Die elastischen Platten, 1925 
p. 308. 

5A. Nadai, Die elastischen Platten, Berlin (Julius Springer), 1925. 
' M. Bergstriisser, Versuche mit freiaufliegenden rechteckigen Platten unter Einzel- 

See PCMEDE, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 302, 
928. 

’ These derivations may be found at a number of places in the technical literature. 
See, for example, A. Nadai, Die elastischen Platten, 1925, p. 20; or the paper by W. A. 
Slater and the writer, Moments and Stresses in Slabs, Proceedings, American Con- 
crete Institute, vol. 17, 1921, p. 415 (or, National Research Council, Reprint and 
Circular Series, No. 32). 

coordinate x to that with coordinate ++dz, the 
bending moment per unit of width, M©/,, increases 

at the rate of on ULE dx. 
Ox Ox 

per unit of width, therefore, may be stated as follows: 

M, at the face with the coordinate x; and NY pe nae 
Ox 

at the face with the coordinate x+dz. 

x by the amount The values 

The total 
moments on the width dy, consequently, may be 
stated as shown in Figure 3: M,dy at the face with 

coordinate x; and (M+ OM dey at the face with 

coordinate «+dz. Similar explanations apply to the 
bending moment M,, the twisting moments 
and M,,, and the shears V, and V,. 

zy 

is y 

* @ 7 () 
Figure 2.— DEFORMATIONS OF ELEMENT OFSLAB, (a) BENDING IN 

DIRECTION OF 2, (b) BENDING IN DIRECTION OF y, (¢) TwisT- 
ING IN DIRECTIONS OF x AND Y 



March, 1930 PUBLIC 

y 

ROADS 2 

FIGURE 3.—FoORCES AND COUPLES ACTING ON ELEMENT OF SLAB 

One may write three independent equations of 
equilibrium of the forces and couples. By equating 
to zero the sum of the vertical forces, and dividing by 
dr dy, one finds 

OVie 0 V- NED eal Ss Dear a ay w=0 ae (L} 

By equating to zero the sum of the moments with 
respect to an axis through the center of the block, 
parallel to the y-axis, by discarding the term which 

is infinitesimal of the third order, Me dx dy. dx, and 

again dividing by dz dy one finds the equation: 

OM, , OMy,_ 
Grn ROY 

The third equation of equilibrium is similar to equa- 
tion 2, and is obtained by exchanging the symbols z 
and y in equation 2: 

aM, , @Mry_y 
Oy Ox -- (3) 

The twisting moments are moments of horizontal 
shearing stresses in the vertical sections. By applying 
the law of equality of shearing stresses in perpendicular 
sections, one finds 

M Vi eee = Ses (4) 

By substituting the expressions for V, and V,, as 
given in equations 2 and 3, in equation 1, one finds the 
additional equation of equilibrium, 

eM,,,0M,,,?M, . 
Seu Brie AGT RE ns -eieeeane ahaa Oe 

When each straight line drawn vertically through the 
homogeneous slab before bending remains straight after 
the bending, the horizontal normal stresses and shearing 
stresses in the vertical sections will be distributed 
through the thickness of the slab according to straight- 
ine diagrams, with extreme, equal and opposite values 

at the top and the bottom and the value zero at the 
middle. The middle surface of the slab, therefore, is a 
neutral surface. At the bottom, the tensile stresses oc, 
in the direction of z, and co, in the direction of y, and 
the shearing stress 7,, in the directions of # and y are 
determined as in the case of beams, by dividing the 

moments by the section modulus, which is e per unit 

of width of the section; that is, 

6 M, 6M, 
eee 9 on aig 1, 

6 M,, 
Ra saa 2 a (6) 

The next step is to express the relations between the 
moments and the deformations. The deformations in 
Figure 2, (a) and (b), are measured by the curvatures, 

2 2 iy ne Ue: 22 eee 
aa in the direction of x, and ee in the direction of 

y, respectively. The deformation in Figure 2 (c) is 
2 

[4 Oz ; 
measured by the twist, — aa The bending moment 

M, alone, without the action of M, and M,,, produces a 
oo Lae Pie 

curvature, — ae in the direction of x, which is expressed 

as in the case of a beam with rectangular cross section 
of depth A and width equal to one unit, that is, 
2 12M, : : 
a2 RS On account of Poisson’s ratio, uy, ys 

lateral contraction to longitudinal extension, this 
curvature will be accompanied by a curvature in the 
direction of y, equal to —y times the curvature in the 
direction of z. The bending moment M, produces no 

twist of the type — By expressing in a similar 
Orz 

Ox dy 
manner the effects of the bending moment /,, one finds 
the combined effect of the two bending moments, 

02 2 = 5 = ja (Ms—pM,)_.---------(7) 

oh (yee 
— 38 EB (M,—uM,)- - ----- ~ (8) 
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The effects of the twisting moments /,, may be 
found by introducing a new system of horizontal rec- 
tangular coordinates, i, hy with the angle (a#r,) =45°, 

1 
so that 2,= 5 (e+ y) w=ss(-2 ty). When f is any 

v2 v4 
function, one finds 

Of Op Onis OF Cyne! (#- of 
Or Ot sO tl O Oe en. Oy Oy) 

This result may be written as a statement concerning 

Re Giri ipa > operator =-: Namely =—=—=(=>=—--—3— ): 
mcd dish Or ; Y Or V2 a 3 

e finds 1 »same manner, 4 shea c One finds in the same me » By -(+5 a 

and accordingly, by combining the iter ual operations: 

072 =3( 0 So, )( Oz te 7 yaa (= ss Oz 

OL0y 1. 2 Ot OU Ot OUd) Ae 2 NOt, we OY. 

The state of moments, 1/,=0, M,=0, 0, M,,40, is equiv- 
alent to the following state of moments in the directions 
of z, and y%,: M, My, Mie Mey Mae Ue By, 

using these vataosss in aaaitone 7 and 8, with x and y 
replaced by a, and y,, and then substituting in the 

02 
expression for=—=—» one finds 

Ox OY 

072) 12(1+ beh AreaLeN 1) Weel ee ae 
Ady at Ee ©) 

By this method one finds, furthermore, for the same 
state of moments, 

eal Opa eas Oe ee a m2)=0 
07? Den e0i) 9 2 \0r me 01,0 mou ; 

0 2 ; abe | 
and likewise a 0. That is, the twisting moment /,, 

: 072 072 
does not contribute to the curvatures, — Ox and — aa 

The three equations, 7, 8, and 9, express therefore the 
combined effect of the state of bending moments, /, 
and M,, and twisting moments, //,,. 

It is expedient to introduce the following quantity, 
which is a measure of the stiffness of the slab: 

Stay) 

Using this quantity, one finds, by solving equations 7, 
8, and 9 for the moments, 

p 0’z 02 
M,=\ (Seam aa) = =e aly 

0°72 2 
— \Jj — gs 9 

t, N( Oy? Ha) (12) 

+ Oz ht 
M,,= = Mero ara (13) 

By substituting these expressions in equation 5, one 
obtains the equation of flexure of the slab, stated by 
Lagrange in 1811, and frequently named after him, 

Oean Once 
Bae) ee Beh Fig = 

= OO Cure AN, 

Otz2 

Ox -= (14) 
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By introducing the differential operator, known as 
Laplace’s operator for two variables, 

NS 

Lagrange’s equation is restated in the simple form, 

NV2H wet eee 

The vertical shears are expressed in terms of the 
deflections by substituting the expressions in equations 
Lieet2) and a3 °an equations 2 2 and 3. One finds 

Nee mare ile 

ax 

Mx y ax My 

Os Be M. + 2Ms 
SPOX, sie 

dx) ax 
Vy ax 

Myy 

(6) 
MoMENTS AND SHEARS AT EDGE 

(a) 
Ficure 4.—TwIstTIne 

Figure 4 shows an edge of the slab. The twisting 
couples in Figure 4 (a) are resultants of horizontal 
shearing forces. These couples are equivalent to the 
pairs of vertical forces shown in Figure 4 (b). The two 
vertical forces at the boundary between the two blocks 

OM ; 
leave a surplus upward force equal to a, ot that is, 

OM ny 
Ox 

shears and twisting moments at the edge leads to the 
theorem given by Kelvin and Tait * in 1867: The com- 
bination of vertical shears and twisting moments at 
the edge is equivalent to a combination of vertical 
forces only, in terms of which the reactions are stated; 
namely, first, a distributed upward reaction, 

eV ey. 

Or 

vertical 

R,=V,+ 

secondly, an upward concentrated force at the left end 
of the edge equal to the value of M,, at that point; 
and thirdly, a downward concentrated force at the 
right end of the edge equal to the value of M/,, at that 
point. At an edge “parallel to the y-axis, with the slab 
on the side of the larger values of 7 one obtains by the 
same method a distributed upward reaction, 

R,= 

At a rectangular corner formed by the two edges men- 
tioned, each edge furnishes an upward force “equal to 

8 Thomson (Lord Kelvin) and Tait, 1867. See arts. 645-648 : ‘ Natural Piilosdouy 
in the later editions. 
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the value of /,, at the corner, giving a total concen- 
trated force equal to 2M,,. 
The problem of the ordinary theory of flexure of the 

slab is to find a solution of Lagrange’s equation 16, sat- 
isfying the special conditions existing at the boundary 
of the area investigated. The boundary conditions are 
expressed by use of equations 11, 12, 13, 17, 18, and 19. 

USE OF INFINITE SERIES EXPLAINED 

Consider a simple beam with span s, carrying some 
concentrated loads and in addition a distributed load, 
the latter expressed by the function p=p(zr), the dis- 
tance x being measured from the left end. The vertical 
shear in this beam is a function V= V(x), which changes 
suddenly at the points of application of the concentrated 
loads, and which at all other points is governed by the 
relation, 

PP eas eae (20) 

Any function V which is obtainable in this manner 
may be expressed by a Fourier series, which converges 
toward V except at the points of application of the 
concentrated loads and at the ends of the beam, of the 
form 

n 

r NTL ; 
Vi= > Cp: COB ee ie aoe Cle 

ihe 

where ¢, Co, Cr. are constants. Assuming 
that a set of constants exists bringing about the 
convergence,’ one may determine the constants by the 
criterion, 

Te 
i, (V=—V>) cos" da=0, ee eo) 

Using the relations, 

; 0 when n#m 
' Mart Nr 5: 
COS cos — dx=}j8 pee: 

0 8 s > when n=m 
2 

one finds, by substituting V; from equation 21 in equa- 
tion 22: 

8 

= 2{ Vecosta un das. awe (24) 
0 

whereby all the constants ¢, ¢, . . may be deter- 
mined when the function V is known. 
By differentiating equation 21 and reversing signs, 

one obtains a new Fourier series, 

n 

WAGs Canta 
= ——= ‘sin ae 

8 8 
Lees 

dV, 

Pde a9) 

which in a special case converges toward p in equation 
20 at all points where p does not change suddenly; 
this special case is that in which all the concentrated 
loads are zero. If the concentrated loads are not zero, 
the Fourier series in equation 25 becomes divergent. 
Yet, integration of the series, with reversal of signs, 

PUBLIC ROADS 5 

reproduces V; in equation 21, and further successive 
integrations lead -to expressions for the bending mo- 
ments, slopes, and deflections in terms of convergent 
Fourier series. So far as these effects are concerned, 

TLIC > NTL 
the aggregation of individual loads eX- 

pressed by the divergent series in equation 25, is equly- 
alent to the complete load on the beam. That is, the 
series in equation 25, in spite of being divergent, rep- 
resents the complete load on the beam, consisting of the 
distributed load p(x), and the cone entrated forces." 

The series in equations 21 and 25 apply outside the 
interval 0<r<s when the function V is periodic with 
period 2s, and symmetrical with respect to the points 
= OManday s, that is, when V(z)=V(—2z), and 
V(st+2z)=V(s—z). The function p, has the same 
period, and is antisymmetrical with respect to the 
points +=0 and «=s, that is, p,(4)=—p,(—2), 
Di(stx)=—p,(s—x). The functions apply then to a 
continuous beam with simple supports at the points 
v= 0; + 's,- se 2s 

5.—VERTICAL SHEARS IN BEAM VIGURE 

In the case shown in Figure 5 one finds, using equa- 
tions 24, 21, and 25, and writing V for V,, ‘and ALOT, ; 

n 

eo bs LS nxt NTL 
V=— > 2 sin — cos ——_______ (26) 

‘a n s s 
{| Sypce 

n 

2P . nTU No ee 
=== sin SU eae ee 7) 

s s Seige 
Gh oes 

The latter expression will be used in representing a 
concentrated load on the slab. 

SOLUTION FOR SLAB LOADED BY CONCENTRATED FORCE, 
EXPRESSED BY INFINITE SERIES 

The y-axis is placed temporarily at the left edge of the 
slab. The edges, at x=0 and x=s, are simply sup- 
ported. The slab extends infinitely far in the directions 
of +y and —y, and is loaded by a single force P at the 
point =u, y=0. This load will be represented as a 
load p on the z-axis defined by equation 27. 

The function z, representing the deflections in the 
part of the slab in which y is positive, is defined by the 
req miroment that it must SOUL Lagrange’s Reg U AO 

9 For proof of the existence of the set of constants bringing about the convergence, 
see, for example, E. T. Whittaker and G. N. Watson, Modern Analysis, second 
edition (Cambridge), 1915, p. 161. 

10 The use of divergent Fourier series in representing concentrated loads was intro- 
duced by A. Mesnager, Comptes Rendus, vol. 164, 1917, p. 600, and has been used 
extensively by A. Nadai; see his book, Die elastischen Platten. 1925, p. 82. 
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A’z=0 (equation 16 with w=0), at all points within the 

area, and in addition the following boundary conditions: 

At the edges x=0 and z=s and at y= ~: 

ga oe Oe ee (28) 

At y=0: 
- P n 

Oz Uae Le _ NTU. NAL fo 
2 =0 and Vi= 5 P=~ "5 Dy si 7 st, .. (29) 

IE Ghcs 

One may determine the function z by a partly deduc, 

tive process. For the present purpose, it is sufficient 

however, to state the solution, and then verify it. The 

following solution | satisfies all the requirements: 

n 

PS 1 nay \ MY 2. nT. NEL 74 
2=S =e ek eae} es sin —— sin ——__(380) 

Qa N n s s s 
oe 

It is seen immediately that z=0 for z=0 and zr=s, 
and for y= ©. One finds, furthermore, 

n 

Oz P. ye iY | NTU Nre 
= — ; —ye = sin ——-.sin ——_-__(3l 
Oy 2QaN n y 8 8 (31) 

ee 

which becomes zero when y= 0. 

nN 

072 te: Lf) tay Sin ea ee 
aS ait lores Je s sin Sil eo 
Oy’ 2aN n ( oY s s (32) 

1, 2,-* 

can] . nTub . ne 
sin —— sin Tee) 

n 

ot tem gl ; HE 14m eae 

Ox? 2aN N 8 
ot 

n 

P |. my 

= ~— = es é Ss 

aN yi 
25 

which becomes zero when r=0, 7= 

Oz 

Oy” 
_. See NTU NAL 
ep aa 

= - 

Or 
sin —— sin — 3¢ S ool __ (34) 

SOL =, 

nN 

: , OAz 15 aNd, Eh OUR 
Vy=—N ss RE hike anny 5 

( Oy 8 s ies (35) 
LZ 

which assumes the required form when y=0._ Finally, 
: 0?Az 0? Az 

one finds, =; = —-+—>> that is, A?2=0. 
Ox” Oy?’ : : 

Nadai’ observed (as may be verified without diffi- 
culty) that by introducing the function, 

nT 

{2 22 aig ee ae 
) : es sin sin ——. . . (36) 

nN Ss Ss 

7) ¢ ce 

P p=Ndz= 
Tv 

02 
one may restate equations 32 and 33 and express and 
. eae) : ae 
in the following simple form: 

Oz 0 
2N 25=¢e-y ae ey Ve 8 Vay eeeeks f) 

1! A. Nadai, Die elastischen Platten, 1925, p. 85. 
2A, Nadai, Die elastischen Platten, 1925, p. 86. 
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bi Gacenaee (38) oe OY? te’ Gye aos si TNS a. 

O21 Oe 
ZN Snag! Qe 7 octane GAD) 

Then one finds by equations 11, 12, and 13: 

1 ibs a) 
M,= 2 ee ets" 1 ay ie? ae (40) 

ies ies a) 
M,= _ ¥ sy oe 2 a(Ak) 

1—p -d¢ Maas 5 (42) 
NADAI’S SOLUTION IN FINITE FORM PROVED 

Nadai, by a deductive process involving functions 
of a complex variable, derived an expression in finite 
‘form for the function ¢ in equations 36 to 42. Again, 
it will be sufficient here to state the expression and 
verify it. 

The origin of coordinates is placed now at the center 
of the span, as in Figure 1. The edges have the equa- 

tions «= -£ = and the point of application of the load P 

has the coordinates x= —v= — 5+ u, y=90. The expres- 

sion found by NAdai, then, is stated as follows: 

iP B DUN Noa ee Ge 
v2) NAz Gz 108. q------------ (48) 

where 

A=cosh un + cos caveat ae ee (44) 

B=cosh au —cos * oe Ut aes (45) 

The function g in equation 43 is the same as the 
function ¢ in equation 36 (restated in terms of the new 
coordinates) if it satisfies the following requirements: 

First, Ag=0 at all points except at the point of 
application of P. 

Secondly, g=0 at r= = and for y= @. 

Third, the total vertical shear at the circumference 
of a small circle drawn around the load shall be — P. 
To show that the first requirement is satisfied, the 

dere aie of ¢ in equation 43 are expressed. One 
nds 

oa a (x—v) 
ae (Pp (S'Oia ge ae eee 

Ox 4s B erry Roa of (46) 

dy ery Ce a 

dy 4 aul (3-4)- mags (47) 

Then, by use of the relation, cosh? “sinh? i I 1, one 

finds 

18 A. Nadai, Die elastischen Platten, 1925, p. 89. 

‘ 
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9? =f = os Tt?) ny 1 

Ff 4°L B a5 
Oy” 

T is 2). 
COS 

ee 
Oy" 

that is, Ag= oe =0. 

The second requirement is satisfied because A=B 
B 

when z= +55 and because A converges toward 1 when y 

increases indefinitely. 
That the third requirement is satisfied, may be shown 

as follows: When a and £ are small values, one may 
2 2 

cosa=1 oo cosh B=1 ae 

the immediate neighborhood of the point x= —v, y=0, 
where «+ and y are small, equation 45 may be replaced 
by the simpler expression, 

write, Consequently, in 

ae TIE ah 
p= de GP +G@+9))= Dg 

where 7 is the distance between the points—?, 0 and a, y. 
Since log, B is numerically large and varies rapidly in 
this neighborhood while log, A varies relatively slowly, 
one may use for A the value at the point r= —?v, y=0, 
that is, 

2nv 9 1 
A=1+cos a =2 cos (49) 

Then equation 43 assumes the following form, applica- 
ble when the distance 7 from the point of application of 
the load is small: 

P 1 c Tr 

LOD peer = ee ae 
ono add TV 

22 COS — 
s 

(50) 

Equations 17, for the vertical shears, may be written: 
dy y : 

V,= V,=-—5.: Correspondingly, the vertical DOT abe dy I gly, 

shear in a section perpendicular to the radius vector r 

may be written: V,= 2 Then equation 50 gives 

V,= 

of the small circle with radius 7 is —P. 
requirements are satisfied. 

P : 
=o that is, the total shear at the circumference 

TT 

Thus all the 

Part III—DERIVATION OF FORMULAS WHICH HAVE DIRECT APPLICATION TO THE PROBLEM OF 
BRIDGE 

DETERMINATION OF MOMENTS AT ONE POINT DUE TO A CONCEN- 
TRATED LOAD AT ANOTHER POINT 

Using equations 40 to 47, one may express the bend- 
ing moments M, and M, and the twisting moment M,, 
produced at the point z, y by the load P at the point 
—v, 0. One finds 

vy <_ cw) van = a ws Roe. 8 ies a Ae 
where 

A=cosh =e + c as my B=cosh 2 cos one v), 

One may use these formulas to obtain expressions for 
the moments produced at the point —v,0 (the point of 
application of P, in Figure 1) by a load P at the point 
x,y. It is necessary for this purpose to let the points 
—v, 0 and a, y exchange significances. That is, one re- 
places x, y, and v by —v, —y, and —z, respectively. 
By this exchange the expressions for A and B remain 
the same. Denoting the new moments by M’,, M’,, 
and M’,,, one finds 

M’,=M,, M’,=M,_--- AES 

n Te?) : m(x+v) 

My naa ae u)Py{ * s ys: : r 

Ms 8s PAR. B - (54) 

That is, a law of reciprocity apples to the bending 
moments: The bending moments in the directions of x 

FLOORS 

and y produced at point 1 by a load P at point 2 are 
the same as those produced at point 2 by a load P at 
point 1. It becomes unnecessary, therefore, to distin- 
geuish between M, and M’,, or between M, and M’,,. 
The twisting moments, on the other hand, do not follow 
this law of reciprocity; M’,, differs from M,,. 

With u»=0.15, equations 51, 52, and 54 may be written 
as follows: ' 

M 
M 

*|=0.10536 P logy oe 

0.10625 ae one U (a-4 ae 

p, (si m(a Be =H ne) 
~ 0.10625 —#\ — pass —++—-— } (56) 

EFFECTS OF LOAD DISTRIBUTED UNIFORMLY OVER THE AREA OF 
A SMALL CIRCLE 

‘Wile ee 
M’., 

Consider now a load P which is distributed uniformly 
over the area of a small circle with center at the point 
—v, 0 and with the diameter c, as P; in Figure 1. In 
order to obtain the correct maximum tensile stress at 
the bottom of the slab by use of the ordinary theory 
of flexure, the moments will be determined (as proposed 
in the introduction) as if the load were distributed 
uniformly over the area of a circle with diameter ¢, 
instead of ¢.”° 
By using polar coordinates 7, 6, with the pole at the 

center of the circle, and with the angle 6 measured from 
the z-axis, the load on an element of the area of the 

14 Numerical computations based on these equations are made conveniently by 
use of the tables published by K. Hayashi, Sieben- und mehrstellige Tafeln der 
Kreis- und Hyperbelfunktionen und deren Produkte sowie der Gammafunktion, 
(Berlin), 1926. 

15 See footnote 3 on p. 2 and the explanation following this reference. 
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4P 
circle will be expressed as 02 rdrd@. On account of the 

TC] 

reciprocal relation of bending moments (equations 53), 

the bending moments produced at the center of the 

circle may be computed by means of equation 51. 

Since the distances are small, the values of A and 6 

may be taken from equations 49 and 48, respectively. 
] 

The term ZI 

as insignificant in comparison with B 

TY 

8 

at the end of equation 51 may be ignored 

Moreover, 

sinh may be replaced by Then equation 51 

leads to the following values of the resultant moments 

at the center of the circle: 

M,) 
“or yee 

| 

i | ‘ay
. neat ( 

Ci 
< 3 Cy Cals . 
Since | ?rdriloy.7= (log. ee 5 )rone finds 

J 0 8 2 

Tv 
ie Ok Wee: 

Ar 

a 28 cos 

4 log, 
7 Tr 

YS ie Cee tn Wes s i t = 5 
ee yen (lox (= cos™) +5)" HW) t’ (57) 

M,) 

The equivalent diameter c, is expressed with satis- 

factory approximation by the following formula,’ 
applicable when c<3.45h: 

GREATEST BENDING MOMENTS COMPUTED FOR CASE OF WHEEL 
LOAD AT CENTER 

When the load is at the center, that is, v=0, the 

moments M, and. M, in equation 57 assume the fol- 

lowing values, which are denoted by My, and Mo, 

respectively : 
BP) Ae 

Mes f-( (1+ w) log. 2 +1) Beal. : (59) 
An TC\ 

Mi, aioe (60) 
Ar 

or, with »=0.15, and ¢, substituted from equation 58: 

Mie= 0210722 | Loe} ~ Logie 046 +1- 0.675 ) fs 

0.1815] 

Moy = Mox— 0.0676 ya Pen pga ly Es, ey oe (62) 

16 Equation 8 in the paper by the writer, Stresses in Conerete Pavements Computed 
by Theoretical Analysis, Public Roads, vol. 7, No. 2, April, 1926. 
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FIGURE 6.—COEFFICIENTS OF BENDING Moments, My, AND Mo,, IN DIRECTIONS OF 2 AND y, RESPECTIVELY, PRODUCED AT 
Vo ari Y r Vin 8 o T CENTER OF SLAB BY A CrenTRAL Loap P DistripuTepD UNIFORMLY OvER THE AREA OF A SMALL CircLE Witru DIAMBTER 

c. RESULTS REPRESENTING EQuaTIons 61, 62, 104, « 3 19 9 m ) 
0.16 » 04, , AND 105. NuMmericaL VALUES STATED IN TABLE.1. Porsson’s Ratio, 



Mo x TABLE 1.—Valwues of the coefficient op of the maximum bending 

moment per unit of width, produced at the center of the slab in 
the direction of the span by a central load P distributed uniformly 
over the area of a small circle with diameter c. The edges are 
assumed to be simply supported. The values were computed 
from equation 61 for different relative values of the span, s, the 
thickness, h, and the diameter c. Figure 6 shows the results 
graphically. Poisson’s ratio, w=0.15 

| e=0 | c=0.05s | c=0.108 | c=0.15s ¢=0.208 | c=0.258 

s= 6h | 0.3051 | 0.3003 | 0.2874 | 0.2701 | 0.2520 | 0.2345 
s= 8h | .3315 .3230 3026 . 2784 . 2552 2345 
s=10h | .3519 . 3390 .3110 2811 | ..2550 | ..2326 
s=12h | .3685 . 3508 . 3154 2815 |  . 2535 - 2303 
s=14h | .3827 . 3595 3178 | .2809 | .2516 2284 
s=16h | .3949 . 3660 .3186 | . 2798 DOPE ek 0 al Se 
8=18h | .4056 |  .3709 SB ISG inte! 2786 lee. Sess lea ee 
s=20h 4153 . 3744 ERISA nae 277 beaten on Nae BO has 

| 

Table 1 and Figure 6 show values of the coefficient 
4 : ; 
ae computed from equation 61. The coefficients 

If, for example, one reads stated are pure numbers. 

in Figure 6, HS the significance is: 14,=0.3 P, 

or, with P=10,000 pounds, M4),=0.3 X 10,000 pounds 

= 3,000 pounds =3,000 nT: 3,000 Ae (the unit 
of bending moment per unit of width being inch- 
pounds per inch or foot-pounds per foot or simply 
pounds). If units of the metric system were used, the 
coefficients in Figure 6 would remain unchanged. 
These comments apply also to the coefficients stated 
in the diagrams and tables which are given later. 

PUBLIC ROADS g 

oe M 
the curves in Figure 6 also represent values of Pp” 

on a separate scale. The third scale from the nght 
serves this purpose. 

The moment 14), could be produced as the maximum 
moment per unit of width in a simple beam with span 
s and width 6,, the load P being applied at the center 
of the span, and distributed over the width of the 
beam. Ignoring the effects of Poisson’s ratio, one may 
assume the bending moment to be distributed uni- 
formly over the width. The width b, bringing about 
this equivalence of a slab and a beam is called the 
effective width.” It is defined by the equation, 

jade 
Moz = 4 b, See Be Sen cee --- (63) 

or, 
Ps 

b i 0s) 

Values of 6,, computed from this equation, with 
M,, defined by equation 61, are shown in Table 2 and 
Figure 7. Knowing 6, one may compute the bending 
moments by equation 63. 

The diagram at the right of Figure 7 shows a set of 
straight horizontal lines which may be allowed to take 
the place of the curves in a crude, approximate com- 
putation. To be on the side of safety the straight lines 
should be drawn so as to represent the low values 
rather than the average values defined by the curves. 
The straight lines are drawn according to the formula, 

ce SOPRA op (65) 
‘ ho Mie Moy - SEE — 

Since the difference between — P and pis constant, 1 &.F. Kelley, Effective Width of Concrete Bridge Slabs Supporting Concentrated 
Loads, Public Roads, vol. 7, No. 1, March, 1926, p. 7. 
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RATIO, > OF SPAN TO THICKNESS 

FicurEe 7.—EFFECTIVE WipTH 6, FOR CENTRAL Loap, DistRIBUTED UNIFORMLY OVER THE AREA OF A SMALL CrircLE WITH 
DIAMETER c, WHEN THE EDGES ARE SIMPLY SUPPORTED (FROM EQuaTiIons 64 AND 65, AND TABLE 2). 
z=O.15 

98022—30 2 

Porsson’s RATIO, 
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A corresponding, roughly approximate expression for 
the bending moment is obtained by substituting this 
value of 6, in equation 63: 

‘ TABLE 2.—Values of the ratio, of the effective width to the span, 
2 

s ? 

in the cases represented in Table 1. The values were computed 
from equations 64 and 61, and are represented graphically in 
Figure 7. Poisson’s ratio, n=0.16 

| 
c=0 c=0.05s | c=0.108 | c=0.15s | c=0.208 | c=0.258 

S=6i = 0 0;819 0. 832 0. 870 | 0. 925 0. 992 1. 066 
S==Sih ie Oe 774 .826 | .898 . 980 1. 066 
s=10h | . 710 Tote ibe ee O04 . 890 . 980 1.075 
S=12i a b18 ES pape LO . 888 . 986 1. 085 
s=14h . 653 . 695 . 187 . 890 994 1. 095 
s=16h | .633 . 683 . 785 . 893 A000 5 |S kena 
s=18h . 616 . 674 SOO! OOM ipe ese ayn nes Nearer ee 
s=20h | . 602 . 668 . 785 £902 Wow a coe ee 

MOMENTS COMPUTED FOR CASE OF TWO WHEEL LOADS ON LINE 
IN DIRECTION OF SPAN 

Figure 8 (a) shows the case of two wheel loads, P; at he 
point 0, 0, and P; at the point z, 0. The effects pro- 
duced by P,; at the point of application of P; are 
expressed by equations 59 and 61, and are represented 
in Table 1 and Figure 6. The moments contributed at 
the point of application of P; in Figure 8 (a) by P; may 
be obtained from equation 51. One finds 

1+cos ih 
wai DST a Fe 

B TL 2s’ : 
1—cos 

and consequently, 

0.4 Pe 

0.3 Pp 

0.2 DP, 

COMM oT TT 
INV) A 

0.1 Pz 

MOMENTS M,OR My AT POINT OF APPLICATION OF P,, PRODUCED BY P 

0285 

VALUES OF 2c 

(2) 
Ficgurp 8.—Brenping Moments Propucep at Point oF APPLICATION OF Lerr oF Two Loans (rrRom Equations 68 AND 72 

O38 OAS O55 

AND TABLES 3 AND 4), 

Vol. 11, No. 1 

1+ 2) TL : 
M, =M,= ae log, cot 28 eye (67) 

or, with »=0.15, 

: x : 
M,=M,=0.21072 P, logy cot 53 Ae (68) 

Table 3 and the curve in Figure 8 (a) represent values 
computed from equation 68. 

y 
TABLE 3.—Coefficients = and a of the moments produced at 

2 2 
the point O, O by the load P; at the point x, 0, computed from equa- 
tion 68, and represented graphically in Figure 8 (a). Poisson’s 
ratio, w=0.15 

—-- : 

| 2 | MelMy) 2 | Ms_M,| 
8 | iP Py», s P, P» 

0.01 | 0.3801 0.15 | 0.1306 
. 02 3166 . 20 . 1029 

|} 08 | < 2796 |). 30 . 0617 
| 05 | 2326 || 40 . 0292 

.07 | .2017 50 || 0 
| 10 |  . 1686 

When there is a fixed distance a between the two 
loads, the moments under P, may be increased by 
moving the loads toward the left, into the positions of 
P, and P, in Figure 1. With P; and P, at the points 
—v, 0 and a-—v, 0, respectively, and P,=P,=P, the 
moments under P; may be expressed as follows, by use 
of equations 57, 59, 51, and 60: 

BU, Presto cy 085. mo M,=M):+ ries log, cos at 

a (a—2v) 
ahaeeye ¥ ecocm. : 

81 Be PAO AaR oe? Gaet = (69) 
1—cos — 

s 

0.4P 

0.2P 

0.1P 

TO OBTAIN COMBINED EFFECT OF TWO LOADS P 

AMOUNTS 4Mz OR dMy TO BE ADDED TO Moz OR Moy,RESPECTIVELY, 

0 Ols 0.23 0.33 

VALUES OF a 

(2) 

0.45 05s 06s 

, 

Porsson’s Ratio, p=0.15 



March, 1930 

Myung Oe 
4r 

w(a— 20) » ™(a— 20) 
28 

when 

Since 1+ cos =2 cos » these moments 

their maximum 
mm  a(a—2v) 

f=C0s +-C0s 
8 28 

, i 1(a—4v) 
writing {/==| cos ——.~—— eieg\. = 

reach values the product 

becomes a maximum. By 

+cos i) one finds that the 

Sg ok KAN Mey pean ire nC Sea ee ae condition, Ween 0 gives sin Ds =(), Or Dares That 

is, the two equal loads are placed as they would be on a 

beam. With v=o equation 69 becomes, 

cot 7 

Me Me i Se (71) 

or, with n=0.15, 

AM, _M:— Mor ral 
P P cot ae b 

AM, M,—M), |= 9-21072 logis —g— --- (72) 
JPET ree a 

These values become negative when a>0.59038s. In 
this case the greatest effect is produced by P, alone, 
placed at the center of the span. 

Table 4 and Figure 8 (b) show values computed from 
equation 72. 

0.4P 

° Ny PA) 

°o eb 

PUBLIC ROADS 1] 

ae oy AM to be added to 
Moz 

TABLE 4.—Values P (given in 

M. 3 : : 
Table 1) or = (equation 62), respectively, to obtain the values 

Mate My 
Dare P, 

3 a 3a d 
the points — -» 0 and 7? O, computed from equation 72, and rep- 

due to the combined action of two loads P placed at 

resented graphically in Figure 8 (b). Poisson’s ratio, w=0.15 

a |AM, AM,|| a |AM, AM, 
8 ie Fi ee lie ee 

0. OL 0.3801 || 0.30 0. 0671 
. 02 . 3167 |: Sn ae e054: 
. 04 . 2532 .40 . 0394 
06 2161, || 4.46 . 0278 
. 10 1692 || ..50 . 0172 
.15 . 1319 . 55 . 0074 
20 . 1052 5903 0 

- 25 . 0844 | 

MOMENTS COMPUTED FOR TWO LOADS ON CENTER LINE 

Figure 9 shows two loads, P, at the point 0, 0, and 
P; at the point 0, y. The moments produced under 
P, hy P; are given by equations 59 to 62 and in Table 
1 and Figure 6. To these moments must be added the 
moments M, and M, contributed at the point of ap- 
plication of P,; by P;. Equation 51, with z=v=0, 
that is, with 

11 5 fii! 
A=cosh Be V2 Cosh me 

7 Beery a2 
B=cosh = 1 =2 sinh’? ee 

MOMENTS AT POINT OF APPLICATION OF F,PRODUCED BYP, 

CHANGE DUE TO FIXING EDGES 

FiaurE 9.—BeEenpiInG Moments Propucep at Point oF APPLICATION OF P; By P; (FROM Equations 74, 102, AND 103, AND 
TABLES 5 AND 7). Poisson’s Ratio, p=0.15 
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and with P=P3, gives 

pons 
gee | 

my, A-#)Psy____ (73) 
28 y 

P. 
7 * log, coth 

4s sinh 7 

M | 
M, 

or, with w=0.15, 

; ix 

Ag: |= 9.21072P, logio coth at ea aaa 4) 
IVE y . TY 

s sinh ‘ 

/ 

Coefficients ae and on computed from equation 74, 
3 3 

‘ are stated in the first section of Table 5. Equation 74 
is represented graphically by the curves drawn with full 
lines in the upper part of Figure 9. 

MOMENTS COMPUTED AT CENTER FOR LOAD AT ANY POINT, AND 
ALSO AT ANY POINT FOR LOAD AT CENTER 

Table 5 and Figures 8 to 14 show moments produced 
at points z, y by a load, P=1, at the center, point 0, 0, 
and moments produced at point 0, 0 by a load, P=1, 

ROADS Vol. 11, No. 1 

at points z, y, for Poisson’s ratio, w=0.15. All of these 
moments are defined by equations 44, 45, 55, 56, with 
v=0. Equations 68 and 74 apply to the special cases 
of y=0 and x=0, respectively. With v=0, the equa- 
tions for the twisting moments (equations 52 and 54, or 
equation 56 when 1 = 0.15) may be written in the simpler 
forms, 

sin ita ae ls 

Me ar sled XE (75) 
4 2s 2ry DRL a: oe = 

osh gs Clare 

sin mE! 
2 tated, ee d —=}t) Py Pa s ley 4 

Dini 4s Qry ng 77-60) 
cosh Sam ee Cnace 

In the special case, b= 5) that is, at the edge, these 

equations give 

VALUES OF Af, VALUES OF My 

VALUES OF x VALUES OF x 

Fiaure 10.—Brenping Moments M,, Propucep at Point 2, y BY Loap P=1 at 0, or at 0 By Loap P=1 at Point x, y (FROM 
Equation 55 AND TABLE 5). Porsson’s Ratio, p=0.15 
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Figure 11.—Brenpine Moments M,, Propucep at Pornt 2, y By Loap P=1 at 0, ok aT 0 BY Loap P=1 at PornT zg, y (FROM 
Equation 55 anp TaBuie 5). Porsson’s Ratio, »=0.15 
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¥ y 
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+ 0.02 + 002 
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0.01 (ove}| 

fe) ° 
° O.ls 02s 0.3s 04s 0.53 ° 02s 0.45 06s 08s 1.0s 

VALUES OF x VALUES OF x 

Figure 12,—Twistinc Moments M,,, Propucep at Point a, y BY Loap P=1 ar 0 (FRom Equations 56, 75, AND 77, AND 
TaBLE 5). Porsson’s Ratio, »=0.15 
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0.03 0.03 

=> Ae ~2 

s 0.02 = 0.02 
u 3 5 
” o w 

S 3 = 
< < 
> > 

0.01 0.0) 

° sae i) 

° Ols 0.25 0.3s 04s O.5s ° 2s 0.45 0.6s .0.8s Los 

VALUES OF x VALYES OF y 

Fraure 13.—Twistine Moments M’,,, Propucep at 0 By Loap P=1 at Pornt 2, y (FROM Equations 56 AND 76, AND TABLE 
5). Porsson’s Ratio, »=0.15 

TABLE 5.—Bending moments M, and M, produced at point x, y by load P=1, at point 0, 0, or at point 0, O by load P=1 at point z, y, 
computed from equations 44, 45, 55 (with v=0), 68 and 74, and represented graphically in Figures 8 (a), 9, 10, 11, and 14. Twisting 
moments M,, produced at point x, y by load P=1 at point 0, 0, and twisting moments M’,, produced at point 0, 0 by load P=1 at 
point x, y, computed from equations 44, 45, 56 (with v=0), 75, 76, and 77, and represented graphically in Figures 12, 13, and 14. 
Poisson’s ratio, u=0.15 

| | 
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Fiaure 14.—Conrour Lines oF SurFACES REPRESENTING Moments (Compare Fiaures 10 To 13). 
Porsson’s Ratio, w=0.15 
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(ip) Py COMPUTATION OF MOMENTS PRODUCED AT POINT OF APPLICA- 
MM, «ts ee ae eee ee (77) TION OF P; IN FIGURE 1 BY THE TWO LOADS P; AND Py 

4s cosh uo The two loads P; and P, in Figure 1 will be assumed 

Vinee to be equal, each equal to P. In order to determine the 

ae value of v at which the bending moments produced at 

For small values of z and y, that is, in the immediate the point —2, 0 by the two loads become as large as 

neighborhood of the point 0, 0, one may write possible, the following conditions are introduced tem- 
porarily: P=1, s=7, y-axis at the left edge. Then 

he ean RED ATs ey AY Send equations 32 and 33 lead to an expression of the follow- 

BID ses kes eee ne ing form for the bending moment M, produced at 

Pen Qa? point uv, 0 by the load P=1 at the point 2, b: 
: 2ry 2 1 mp2 cosh ea SOS ae = (Gage). / 

Then equations 75 and 76 may be written M=— >») C’, Sin mtb. siN Me-——=-—-— == oO) 
; AD Nerets 

Cl) ie ay) (So Le sy oe a 
May=M'sy Aa eet pe aes 26. (78) where the coefficients C, are functions of 6 only. The 

i ; ; same formula, only with different values of Cp, ex- 

where 6 is the angle between the z-axis and the radius presses the corresponding value of M,. The two loads 

vector to the point z, y; or, with »=0.15, P=1 at the points u, 6 and u+a, 6 then produce the 
xy moment, 

Pe Aer 
Mzy=M' z= — 0.06764 P os : 

= — 0.03382 P sin 29 --.-.--.--- (79) M= 2 OC, sin nu (sin nu+sin n(u+a)) 

With z=y, equation 79 gives M,,=M’',z,= — 0.03382P. 1,2,% ; 

With «=2y or y=2z, the same equation gives M,,= 7 

M’ y= —0.02706P. C, 
Attention is called especially to Figure 14, showing = 3g (1—cos2nut cos na — cos n(2u+a))_(81) 

contour lines of the surfaces representing the moments. oer 

0.4P 0.4P 

at 

[a) 
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< 
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a 
0.3P As 0.3P 
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0-1P 

M,, PRODUCED AT POINT OF APPLICATION OF 
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VALUES OF @ VALUES OF 3 

_Figure 15.—BENDING Moments Propucep at Pornt oF APPLICATION OF P; By Two Loans, P;=P ann Py=P (FRoM Equa- 
TION 88 AND TABLE 6). Porsson’s Ratio, »=0.15 
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One finds, furthermore, 

dM _ 
du 

Ty 25+ 

n C,, (sin 2nu+sinn(2u+a))__-_(82) 

a a f 
»orv=-—: It is con- 

3 so 4 
cluded that M, or M,, respectively, reaches an extreme 

which becomes zero when u= 

a : ; ; 
2 and that this value is a maximum 

when M in equation 80 is positive for all values of x 
between 0 and x. That is, the rule by which two equal 
loads are placed on a beam so as to produce a maximum 
moment, and which was found to apply to P; and Ps, 
applies also to Ps and Py. 

The y-axis is now moved back to the center-line of 
the slab, and the span is assumed to have any value, s. 
The two losdstle = /erand P= Peare placed as shown i in 
Figure 15. For these two loads equations 44 and 45 
give equal values of A, but different values of B, which 

value when v= 

will be denoted by B; and By, respectively. One finds 

A=cosh 7 4 cos = Pe SESS) 

B;=cosh ol se 5t ke ae ee eee 4) 

B,=cosh ah =cos = Ae ee (85) 

The moments produced by the two loads, P;=P and 
P,=P, then may be expressed as follows, ine use of 
equations 51 and 54: 

M,|_ (+ w)P A? 

WUE ASOT SAE yee 

ple EL One co / em rn 
Ss ——= sinh pe (Fe eo) Bea nee 2 (S86) 

sin” 
| Ge Sova 8 Le 
Mo. — 85 | (87) 

or, with w=0.15, 

M,\_ A 
1, = 010886 P logie 5 7 

poe) 1b ye : 0.10625 — sinh “(et pa 

sin — 

M,, =~ 0.106254" pone e-------- (89) 
4 

Table 6 contains values computed from equations 88 
and 89 with use of equations 83, 84, and 85. Figure 
15 shows curves representing equation 88. 
A comparison of equations 87 and 76 shows that the 

a 
=» 0,.by twisting moment /,, produced at the nae may 

ah and © ae b, is equal 
A 

to the twisting moment V/’,, produced at ae point 0, 0 

the two loads P at the points — 

7a 8a, i 
by a single load P at point 5>5- Figures 13 and 14, 

Wi ROADS 

therefore, supply the necessary information about the 
twisting moments produced by P; and Px. 

COMBINED EFFECTS OF FOUR LOADS 

To produce the greatest possible bending moments 
M, and M, at the point of application of P;, the four 
loads, P:, Ps, P3, and Py, each equal to P, are placed 
as shown in Figure 16. The combined effec ts of P, and 
P, are given in equations 71 and 72 and in Table 4, in 
conjunction with equations 60 and 61 and Table 1. 
The combined effects of P; and P, are defined by equa- 
tions 83 to 89 and are given in Table 6. By adding the 
results, one finds the moments M,, M,, and M,, pro- 
duced at the point of application of P, by the combined 
action of the fourloads. From these values one obtains 
the principal moments M/, and Ms, that is, the greatest 
bending moment and the smallest bending moment at 
the particular point, and also the angle y  betw een the 
z-axis and the direction of M4, by the following for- 
mulas, which are analogous to those applying to a plane 
state of stresses: 

M)_MtMy, {@4.-MY yp 
Wat Ba oN ee 2 AP ee (90) 

2M,, | 
tan 2y= M.-M, (91) 

Table 6 contains values, for P=1, of M,, and of the 
amounts M,—M),, M,—M., M,- Mor, and M,—M)~ 
which are to be added to Mo, (as given by equation 61 
and in Table 1) in order to obtain the moments due to 
the four loads. The curves in Figures 16 and 17show 
the values of M,—M),, M.—Mo,, and wy for different 
values of a and b. 

An examination of Figure 17 shows that the following 
formula applies as a crude approximation, giving values 

and which are not too small, when 0.3s<a<0.5s, 
Os. b= s- 

M,—Mo, 0.48 ne 
eee aa) Ona fa kee OZ ) 

Using this formula in conjunction with the roughly 
approximate formula, equation 66, one finds 

Ps SU ALS 

2.32s+8c ' 2at+b 
M,= (mee (93) 

DETERMINATION OF CHANGES CAUSED BY INTRODUCTION OF 
BEAMS IN DIRECTION OF 7 

Let the slab, extending indefinitely far in the direc- 
tions of +y and —y, be loaded by a force P at the 
point z, y, and by a force —P (that is, an upward force 
P) at the point x, 2b,—y, (where b;>y,). The deflec- 
tions, z, and bending moments, /, and M,, produced 
by the two loads at the line y=6, will neutralize each 
other, so that at this line one finds z=Az=0. The 
part of the slab for which y<.b,, therefore, behaves as 
if the slab had a simply supported edge at y=b,. Like- 
wise,'* if one introduces a set of loads + P at the points 
L=%, y=y,t+2nl, and loads —P at the points x=2,, 
y=2b,—y,+ 2nl, with n=0, +1, +2,.. ., the part of 
the slab between the lines y= =}, and y= “by —l will act 
as a rectangular lab Ww bic h has guoply suDponted edges 

IS A. Nadai, Die elastischen Platten, 1925, p. 84. 
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Friaure 16.—ComBINED Errsects oF Four Loaps. AMOUNTS TO BE ADDED TO Mo, TO OBTAIN PrincipAL Moments M, AND 
M>, PRODUCED AT PoINT OF APPLICATION OF P, By Joint AcTION oF Four Loans, P;, P2, P3, AND Py, Each Equat To P. 
ANGLES BETWEEN 1-Azis J|AND M;. (From Equations 60, 72, AND 83 To 91, AND TABLE 6.) Porsson’s Ratio, »=0.15 
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05s 

VALUES OF @ 

4 

PA 
°o 

VALUES OF b 

Fre@ure 17.—ComBINneED EFFEcTs OF Four Loaps. Curves 
FOR CONSTANT VALUES OF M,— Mo;, DETERMINED FROM 
FigurE 16. Porsson’s Ratio, w=0.15 

TaBLE 6.—Bending moments M, and M, pent at pornt a2, 
4 

O by two loads, P=1, at points aap ban fee , b, computed from 

equations 83, 84, 85, and 88, and ot as: graphically in 
Figure 16. Twisting moments M,, produced at the same point 
by the same two loads, or by these loads in conjunction with P, 
and Ps, computed from equations 85 and 89. Amounts M,— 
Moz, My— Moz, My— Moz, and M.— Mo, to be added to Moz to 

obtain the moments produced at point = O by the combined 

action of four loads, P=1, applied as shown in Figure 16, M, 
and M» being the principal moments at the point. Angle w 
between x-axis and direction of M,;. The values of M,— Moz, 
M2— Moz, and ¥ are computed from equations 60, 72, and 83 to 
91, and are represented graphically in Figures 16 and 17. 
Poisson’s ratio, w=0.15 

From two loads | From four loads 

| 

wate b leg nrg Oe Veh 5, Ye ae ee Yee 
a ew oe ee eel Mea Ides | Maw h-Bdey 4 | 

° /, 

0.1 |0. 34483 | 0.18703 |0. 02594 0. 45003 | 0. 22459 (0.45297 | 0.22165 | 6 29 
-2 | . 27823 | . 09281 | .03163 | . 38343 | . 13037 | . 387383 | .12647 | 7 1 

0.2 -4} .18788 | .00566 | .02292 | . 29308 | .04322 | . 29517 | .04113 | 5 12 
: -6 | . 12818 |—. 020380 | . 01464 | . 228388 | .01726 | . 229389 | .01625 | 3 57 

-8 | .07838 |—. 02848 | .00925 | .18358 | .01408 | .18408 | .01358 | 3 7 
1.0 | . 04864 |—. 01934 | .00579 | . 15384 | .01822 | .15408 | .01798 | 2 26 | 

| 

.1 | .305386 | .16128 | .01861 | .37250 | .16078 | .37412| .15916| 4 59 | 

.2 | .24195 | .08321 | .02790 | .30909 | .08271 | .31248 | .079382 | 6 55 
3 -4 | .16583 | . 00691 | .02622 | . 23297 | .00641 | . 23597 | .00341 | 6 31 

G .6 | .11039 |—. 01767 | . 01854 | .17753 |—. 01817 | . 17927 |—. 01991 | 5 22 
-8 | .07074 |—. 02106 | .01222 | . 13788 |—. 02156 | . 13881 |—. 02249 | 4 22 

1.0 | .04405 |—. 01747 | .00781 | . 11119 |—. 01797 | .11166 |—. 01844 | 3 27 
| 

.1| .27690 | . 13864 | .01364 | .31634 | . 11044 | .31724| .10954|3 46 
-2 | .21347 | .07023 | .02258 | . 25291 | . 04203 | . 25530 | .03964|6 3 

4 -4 | .14361 | .00603 | . 02542 | . 18305 |—. 02217 | . 18615 |—. 02527 | 6 57 
: .6 | .09563 |—. 01521 | .01981 | . 13507 |—. 04841 | . 138724 |—. 04558 | 6 16 

.8 | .06138 |—. 01824 | . 01369 | . 10082 |—. 04644 | . 10208 |—. 04770 | 5 16 
1.0 | .03825 |—. 01517 | . 00896 | . 07769 |—. 04337 ; .07835 |—. 04403 | 4 13 

.1 | . 25423 | .11909 | .01012 | . 27146 | .06868 | .27196 | .06818 ;2 51 
-2 | .19030 | .05674 | .01765 | . 20753 | . 00683 | . 20907 | .00479 | 4 59 

5 .4 | .12297 | . 00389 | . 02238 | . 14020 |—. 04702 | . 14284 |—. 04966 | 6 43 
é 6 | .08037 |—. 01827 | .01892 | .09760 ,—. 06368 | . 09979 |—. 06587 | 6 36 

| -8 | .05113 |—. 01535 | . 01368 | . 06836 |—. 06576 | . 06974 |—. 06714 | 5 46 
1.0 | . 03171 |—. 01261 | . 00917 | . 04894 |—. 06302 | . 04969 |—. 06377 | 4 39 

| 

at c= +> and at y=b, and y=6,—1, and which is loaded 
2 

by the force P at the point x, y;. This equivalence of 
two cases leads to a simple determination of the action 
of the rectangular slab by use of the results found for 
the slab extending infinitely far in the directions of x 
and y. 

As the first example, consider a slab which has simply 

supported edges at «= + +5 and at y= 5 and which ex- 

tends infinitely far in the direction of —y. Let this 
slab be loaded by a force P at the point 0,0. The slab 
extending infinitely far also in the direction of +y then 

is to be loaded by the additional force —P at the point 
r=0, y=2b,—y,=s. Values stated in the first section 
of Table 5, then sive at the point 0, 0: 

M, 

M, 

= M,,—0.0263P 

= My, +0.0105P 

As a second example, consider a square slab loaded 

With b,=5,1=s, 
duced at the points r=0, y=0, +2s, +4s, . and the 
loads —P are introduced at the points x=0, y= +s, 

at the center. the loads P are intro- 

+3s,.... Then one finds at point 0, 0, by use of 
Table 5 and equation 62: 

M,= Mo, + 2(— 0.0263 + 0.019—0.0001+. . .)P 

=M),—0.0490P, 

1, = (Moz—0.0676P) + 2(0.0105—0.0013 + 
0.0001=. . OP 

= M),—0.0490P. 

The equality of the two moments, so determined, is 
noted. ‘They should be equal since the slab is square. 

EFFECTS OF CHANGING FROM SIMPLY SUPPORTED EDGES TO FIXED 
EDGES INVESTIGATED 

A rectangular slab is apouelgeree which has simply 

supported edges at *= + 5 = and y= = and is loaded by 

a single force P at the center, ate 0, 0. - By intro- 
ducing the symbols, 

OILS eho ha LAS 
SRR Ms” Eee) ad eS 8 (94) 
where n=1, 3, 5,--+-- 

one may show that the following formula expresses the 
deflection of this slab at the point x, y when x0: 

n 

Vad i cos ee 
B= xrsny ——- tanh B5— FeMLre cosh W nd 

1, 3, 5,-° 

—q,« tanh a, sinh w,¢—sinh w,7+w,2 cosh ont |. (95) 

To verify this formula, one may begin by observing 
Syon. ] 

that z=0 when x= = (giving w,7=a,) and when y= +=» 
le = Z 

One finds 
nT 

Oe tl COS &n¥ 
br Oq2N Fz | Onl sinh w ,« 

1, 3, 5,-- 

An 
- sinh w,7—w,2 tanh “a, cosh w,7 |_-_ (96) 

cosh? apy 

which becomes zero vhen «=0. By further differenti- 
ations one finds 

Tm 

‘Fe COS Wy ; se 
Az=—yy = nl) tanha, coshw,x+sinhw,xr |. (97) 

AZo Ge 
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l ; 
which becomes zero when L=5 or y= +5: The vertical 

shear in a section parallel to the 7 y-axis becomes, accord- 
ing to equation 17, 

n 

OAG) Mee: 
ay Of eT COS Wy | COSh wx 

Leste. 

V.= 

_. (98) —tanh a, sinh out |. eg 

When x=0, this series assumes the divergent form, 

By comparing this equation with the expression for V, 
in equation 29, it is seen that equation 99 expresses the 
fact that the boundary condition in the section x7=0, 
resulting from the presence of the concentrated load P 
at point 0, 0 is satisfied. By further differentiations of 
equation 97 one finds A?z=0. Thus, the function 2 
in equation 95 satisfies the equation of flexure as well as 
all the conditions of the pone ae 

The slope at the edge z== is of particular interest. 2 
Equation 96 gives at this line 

n 

Oz fed) COS Wri Ay SInh a, 
eet a UAT, 2 3 Sel) Ox Qr°N n cosh? a, 

ip eae 

Consider now the function, 

n 

Pe: Ro > ae wy a, tanh a, 
“i nN n® sinh 2a,+2a, 

ME noc 

E ,tanha, cosh w xr 

—w,t sinh oat | eee ae +2(101) 

This function is found to have the following properties: 

l 
Aty=+ $5: 41 = Az,=0 

E 02, Taig Pc 0AzZ, 
At r=0 Anca? Ve rey ee 

Oat aee ee Od Oz - 
At r= 5° 2 =0, eet ae (equation 100). 

At all points: A?z,=0 

It follows that the function z’=2+ 2 represents the 
deflection (for x>0) of a rectangular slab which has 

1 
as and fixed edges at simply supported edges at y= + 

s ee : 
“z= +5» and which is loaded by the force P at the point 

0, 0. That is, 2, represents the change of deflection 
caused by fixing the two edges parallel to the y-axis. 

ROADS Vol. 11, No.1 

The corresponding changes of the moments in the 
section z=0 are then expressed as follows, by use of 
equations 11 and 12: 

M,=N| -% ee 

nN 

=) wee wry tanh a, 

AA | sinh 2 a,+ 2a, 

M’, 

(1) o, tanh c= 2| Soe) am 

1.3) Bik 

07z 072 
M’ NG EIN s x = ',—M, Tt |. 

PsX h S COS w,y tanh a, , 
—— : 2 = (k= , tanh oe le oe 

2} sinh 2 a,+2a, re: Be ae #] (103) 
1,3,5,008 

The values stated in Table 7 have been computed 
from equations 102 and 103 with w=0.15 and J= 
2.5rs =7.854s. The value of Jis so large that changing it 
to infinity would make no noticeable difference. The 
results are represented graphically by the curves in the 
lower part of Figure 9. The curves for M’, and M’, 
in the upper part of Figure 9 were constructed from the 
curves for M, and M, by laying off intercepts equal to 
Vie Mandi sein 

From the values given in the table for point x=y=0, 
one finds by use of equation 60: 

M'o2=Mo2—0.0699P _________- (104) 

M’yy =Moz—0.06764P —0.03863P = M,,—0.1063P 
CMe Nem kr (105) 

These formulas explain the two scales farthest to the 
right in Figure 6. 

TaBLE 7.—Changes, M’,—-M, and M’,—M,, of the bending 
moments at the center-line of the slab,.caused by change from 
simply supported edges to fixed edges, when the slab is loaded by 
the force P=1 at point 0, O. Values computed from equations 
102 and 108, and shown graphically in Figure 9. Poisson's 
NAO — Ono. 

= =e SF SO aes seat 2 Ne 

| ¥ y | = M’'.—Mz | M'y—My ||_-, M’:—M; | M’y—M, 
} | 

le = a — | ss 

| 0 —0, 06994 —0. 03863 1.0 | =0. 0248 0.0059 | 
| ev —. 06755 —.0323 || 1.5 | —~.00764 00386 | 

4 —. 0602 —.0181 || 2 —. 00198 . 00129 
pe ex! —.0489 |  —.0048 || 

SLAB CANTILEVERED FROM A SINGLE FIXED EDGE INVESTIGATED 

The slab shown in Figure 18 has a fixed edge along 
the y-axis, and is assumed to cover one-half of the ry- 
plane, the part for which z is positive. Consider the 
bending moment MM, produced at the point 0, 0 by a load 
P=1 at the point z, y. The locus of a point with the 
three rectangular coordinates a, y, M, is the influence 
surface for M,. It is well known that any influence 
diagram may be obtained as a deflection diagram by 
introducing the proper discontinuity at the point under 
investigation. In applying this principle to the present 
case, one is to determine a surface with coordinates 2, 
y, 2, 80 that the function ¢ satisfies the following condi- 
tions: It is required, first, that the equation of flexure, 
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Figure 18.—Brnpinc Moments at Fixep Ep@r or LARGE SLAB (FROM Equation 110 AND TABLE 8) 

A’z=0, be satisfied at all points except at the point 0, 0, 
where the function has a singularity; secondly, that 

0z 
-~ Ox 
thirdly, that z and Az shall converge toward zero when 
xz or y increases indefinitely; and fourthly, that the 
singularity at the point 0, 0 shall represent a proper 
concentration of slope at the particular point. 

One may think of this concentration of a slope as 
one thinks of the concentration of a force: The distrib- 
uted force p=p(y) represents a total load P= {pdy; 
by changing the function p gradually, but maintaining 
the value of the integral, the distributed force may be 

0 at the edge 7=0, except at the point 0, 0; 

changed into the concentrated load. The function ee 

may be concentrated by gradual change in the same 
manner as the function p. 

A function z of the following form is found to satisfy 
the requirements: 

Jind ie: 
ety? al eclet 

where kis a constant. A simple method of determining 
this constant is by noting that a distributed load, one 
unit per unit of length, on the line x=1, produces a 
moment /,=—1 at the edge. That is, 

Phe (ign Cli Aue; ey - 
I= | ppg in on b= 2-107) 

Since z in equation 106 is interpreted as equal to the 
desired moment /, at the point 0, 0, one finds 

M,=- 

or, in terms of the angle 6 from the z-axis to the radius 
vector, 

1 : 
Mi= res Gee ee (109) 

The result expressed in equation 108 may be restated 
as follows: A load P at the point uw, 0 produces a 
moment diagram at the edge with the equation, 

Modi 

Table 8 and Figure 18 show values computed from 
this equation. 

TaBLE 8.—Moments M, at fixed edge in Figure 18 when P=1, 
computed from equation 110 

my 

\| 

y 
Fi | —M, | Fi —M, 

ye, ree eee | {| a 

0 0.3183 || 2.0 | 0.0637 
@ 12920 || 2.5 ‘0439 
a 2546 || 3.0 "0318 
Tt Wega aa Rees 0240 
ies 0979 || 4.0 0187 

I] 

It is of some interest to know the bending moment 
M, produced at point 0, 0 in Figure 18 when the load 
P is distributed uniformly over a circle with diameter ¢ 
tangent to the edge at point 0,0. Equation 109 gives 

Wess f ag [a coef 
A ot 0 TC Tv 

or, ; 
awa 
M, Tg o-oo none e ern ----- Sane) 
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REACTION PER UNIT OF LENGTH ATLEFT E0GE (x 
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Fiaure 19.—ReEactions at Lerr EpGr (FROM EQUATION 
115 anp TasBLE 9). Porsson’s Ratio, »=0.15 

This moment is three-fourths of the moment produced 
when the load P is concentrated at the center of the 
circle. 

REACTIONS DETERMINED 

Consider the case shown in Figure 19. The y-axis is 
at the left edge. The two edges are simply supported, 
and the slab extends infinitely far in the directions of 
+y and —y. The load P is applied at the point u, 0. 
From equations 17, 43 to 46, and 52, and by considera- 
tion of the changed position of the y-axis, one finds the 
shear V, and the twisting moment M,, at the left edge, 

sin = 
=e Fees. 

\ ZO = i 7 ru, SS SSS SS Se (112 
as Tv 

cosh “4 —cos = 
8 s 

ines S ————— 

re ea) s 
M wh oe ee ee te ry Te nae (113) 1) 

cosh *y =C0S 

According to equation 19 this combination of shears 
and twisting moments is equivalent to the vertical 
reaction, 

sin 
S OMe No WL s 

R.=V_,+— coos aire Oy 4s TY TU 
cosh —+—cos — 

s Ss 

7 5 Tl 
a i sinh ne 

Gar me es | ut | ea ae ae Tv TU 

F cosh Yee 

or, with w=0.15, 

sin we 
P Fmbeees 

Re=07125— -—"_-— X 
8 Ty . Wu 

cosh —* — cos 
S 

Ty. , 7 
f sinh Z 

L=0°39825 - #_ (115) 
Sein ey TU 

cosh snr Cosas 

Table 9 and Figure 19 show values computed from 
equation 115. 

PUBLIC. ROADS Vol. 11, No. 1 

+ O.1771S 

om ie) | 
- 0.21238 

— 0.23318 

Figure 20.—Posirions or RersuLtTrants, Hacn REPRE- 
SENTING Lerr Har or Ricgut Har or THE DIAGRAM 
oF ReaAcTIONS, IN CAsES SHOWN IN FIGURE 19 (FROM 
EQuaTIon 116). Porsson’s Ratio, p=0.15 

TABLE 9.—Reactions R, produced at the left edge by aload P=1 
on the x-axis at the distance u from the edge, computed from 
equation 115, and represented graphically in Figure 19.  Pois- 
son’s ratio, w=0.15 

| Reaction Rr | Reaction Rz 

Z | | Lf | 
s | | s 

el ps on ee ah ae 2 | U=58 | U=58 | U=58 | u=z8 u=58 u=38 

| | | | ag. | i | 

| 0 1.2340 | 0.7125 | 0.4113 0-7 | 0.0427 0.056 | 0.0515 
sil | Oe .659 |  .3904 .8 0211 ..030 . 0290 
D . 7200 £530) pe 23354 .9 . 0085 .014 | .0144 
BS . 4336 382 | . 2636 1.0 . 0014 . 004 . 0054 
oA . 2503 Bite) iktpe 1 07a eee = 000;c:,| shes eee 
5 . 1423 . 162 | . 1315 Taal. Wen 0015 | eee 
.6 . 0795 . 098 0849 | | 

| | | | 

For the purpose of computing bending moments in 
the supporting beams, it is of interest to know the posi- 
tion of the resultant force representing the right half 
of each of the symmetrical diagrams in Figure 19. The 
distance, yz from the point 0, 0 to this resultant is 
defined by the equation of moments, 

ye. R dy = = eye eee __ (116) 

The integral on the left side of this equation becomes 

in the three cases - 

tegral on the right side was determined in each of the 
three cases by numerical integration. By this method 
the three distances yz shown in Figure 20 were obtained. 
One may interpret these results by saying that the 
resultant of the whole reaction is resolved in each case 
into two sub-resultants, each representing one-half of 
the diagram, and located as shown in Figure 20. An 
examination of the values given in Figure 20 shows that 
the following formula applies as a rough approximation: 

ef and = respectively. The in- 

Un 0 Dae 
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FigurrE 21.—RkEracTIOoONS PRODUCED By LoAD CLOSE TO 
EpGE (FROM Equations 119 anp 120, anp Tas LE 10) 
In Cask oF SIMPLY SupporTEeD Epas, Porsson’s Rario, 
ss Le 

When the distance uw from the edge to the load be- 
comes small in comparison with the span, one may 
simplify equation 114 by substituting, 

2 

pin =; sinh oi BY Osh! = 00s = 53 Opies: 
aes et as s Pees 

Then one finds 

Je We Bam sn artaa( 1+ ut 20 —w) rye) —- (118) 
or, with n»=0.15, 

A =e ey pe __ (119) 
we y y° 

1+ 2 les; 2 
UW U 

When the edge is fixed, one finds, by a procedure similar 
to that which led to equation 110, 

1 _P 0.6366 

G8) G8) 
Table 10 and Figure 21 show results computed from 

equations 119 and 120. 
If x is substituted for uw in equations 118 to 120, these 

equations may be interpreted as defining the reaction 
R, produced at point 0, 0 by a load P at point z,y. In 
terms of polar coordinates, with z=rcos 6, y=r sin 8, 
one finds then at point 0, 0 at the simply supported 
edge 

P cos 6 
eT Qar 

(ee peel) COS* 0) 2 et 12.1} 

TaBLE 10.—Reactions R, produced at the left edge by a load P=1 
on the x-axis at a small distance u from the edge, computed from 
equations 119 and 120, and represented graphically in Figure 21. 
In case of a simply supported edge, Poisson’s ratio, u=0.15 

Values of Rz Values of Rz 

md eet oreaa, Heese "aD haar a 
u | Simply mia | «w | Simply Non 

supported | deen supported Fixed edge edge edge edge 

| o | 0.4535 | 0.6366 || 20 | 0.0474 | 0.0255 
3 . 3956 . 5858 2.5 . 0304 . 0121 
TON aloo . 4074 3.0 . 0210 . 0064 
A hin fe mses . 2867 305 . 0154 . 0036 

1.0 . 1591 . 1592 4.0 . 0117 . 0022 
1.5 0819 . 0603 

\| 

and at point 0, 0 of the fixed edge 

2b 
gee COS” ale ake hy Be (122) 

Tr 

One may use these formulas to determine the reaction 
per unit of length produced at point 0, 0 when the load 
P is distributed uniformly over the area of a small 
circle with diameter c, tangent to the edge at point 0, 0. 
By integrating over the area in the same manner as in 
deriving equation 111, one finds at point 0, 0 of the 
simply supported edge 

tei as ay 
R,= 2 TO woe erie ae (123) 

and at point 0, 0 of the fixed edge 

UCL Lene Serna (124) 
1C 

It is noted that = is the value that would be obtained 

if the force were distributed uniformly over the length 
of the circumference of the circle. At the fixed edge 
the twisting moments are zero, and R, is the same as 
the shear V,. At the simply supported edge, on the 
other hand, the presence of the twisting moments 
cause #, in equation 123 to be larger than the shear 
V, at the same point. One finds at point 0, 0 

pe lon Oe eae ee (125) 
1C 

That is, the shear V, at point 0, 0 is twice the value that 
would be found by distributing the load uniformly over 
the circumference of the circle. 
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